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Contact line instability in spontaneous
spreading of a drop on a solid surface
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The wetting kinetics of a drop on a solid surface is measured by observing the
movement of the contact line, which is often seen to be unstable, showing a scalloped
profile. Many factors have been cited, which, although they can cause instability,
can also be eliminated from the experiments, but still the instabilities appear. The
basic shape of a spreading drop has a large curvature localized in the vicinity of
the contact line as determined by microscopy. It is shown here using linear stability
analysis that this curvature can destabilize the contact line region. When the drop
profile is disturbed from a basic thickness of h̄ to h̄+ h′, there are two contributions
from h′ in the form of added Laplace pressure. One of these is commonly accounted
for in the stability analyses. The other is not, and occurs only if the basic shape has
a curvature, and the drop has a large curvature near the apparent dynamic contact
line, but only for a wetting liquid. This is why instability is not reported in the case of
spreading of drops of non-wetting liquids. It also explains why instability gives rise to
the changed spreading kinetics of drops that are sometimes reported in the literature,
and suggests that as larger curvatures are expected in forced spreading those cases
are probably accompanied quite frequently by unstable contact lines.

1. Introduction
The rate at which a drop spreads on a solid surface, which is called wetting or

spreading kinetics, is often measured as a function of time. These measurements are
taken by noting the position of the contact line, the line common to the liquid, solid
and the ambient fluid. The study of wetting kinetics is important in coating processes
(Kistler 1993) and shows that steady movement often breaks down at the contact
line. In the case of spreading drops, the contact line instability is observed under
the microscope in the form of a scalloped line or a line with periodic waves. The
various cases observed are listed below, but first some preliminary comments on the
experimental observations made on a spreading drop are noted.

Drop volumes used in experiments are 2–15 µl and at these values gravity does not
play a role in spreading. The wetting velocities for spontaneous spreading are small,
such that neither entrainment of the displaced fluid, nor the disappearance of the
contact line, occur. The spreading drops of wetting liquids show under microscopy
values of dynamic contact angles λa greatly different from the equilibrium value of
zero. More accurate methods show that there is a thin precursor film ahead of the
contact line, too thin to be seen under a microscope and which does subtend a zero
contact angle on the solid substrate, in keeping with the fact that the liquid is wetting.
The basic drop shapes under dynamic conditions show a segment of spherical profile,
and λa is the angle obtained when this shape is extrapolated to the solid surface. The
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basal radius is given by

r0

V 1/3
= a(c+ t/V 1/3)1/10, (1.1)

where a and c are constants, and c contains the initial conditions. V is the drop
volume and t is the time. Equation (1.1) holds even when the ambient fluid is a
viscous liquid, as long as the liquid is wetting. For a spherical cap profile and small
dynamic contact angles λa ≈ 4V/πr3

0. Combining this with (1.1) one obtains what
Kistler (1993) calls the Hoffman–Voinov–Tanner rule dr0/dt ∝ λ3

a. Equation (1.1) is
obtained under the lubrication theory approximation where drops are flat and move
slowly. A problem arises in that the stresses at the contact line are seen to be infinite
and a slip velocity is required at the solid–liquid interface to remove the singularity.
The chief characteristic of the slip velocity is the slip length l which governs the
magnitude of the slip and is hence expected to be small. The slip length is included
in the term a in (1.1). Instability has been observed in the following cases.

(i) When a drop is spreading very rapidly, as in liquids of low viscosity, the contact
line acquires a scalloped shape. Nieh, Ybarra & Neogi (1996) observed experimentally
very rapid spreading and contact line instability for polymer solutions containing less
than 5% polymer. But these effects disappeared at above 5% polymer, probably
due to the lowered rates of spreading resulting from increased viscosities. At large
velocities inertial forces should be important, and recently Lopez, Miksis & Bankoff
(1997) have presented a linear stability analysis which shows that the inertial forces
exert a destabilizing influence.

(ii) Fournier & Cazabat (1992) have shown experimentally that vaporization of
an impurity from the leading edge can lead to contact line instability in that the
contact line shows a periodic profile that is due to the Marangoni effect. Analysis of
the Marangoni instability in a situation that bears some resemblance to a contact line
has been given by Troian, Herzbolzheimer & Safran (1990). However, it is possible
to make the liquid less volatile before use or saturate one liquid in another in a
liquid–liquid system, such that no mass transfer and no Marangoni effect arise. Also,
the liquid most commonly used in the experiments is polydimethyl siloxane which is
generally free of volatile impurities since hydrocarbons and many organic liquids are
insoluble in it. These systems also show a contact line instability.

(iii) In spite of experimental precautions Nieh et al. (1996) observed contact line
instability at low spreading velocities, but only for wetting liquids. That is, they
investigated the spreading kinetics of polystyrene in dibutyl phthalate over glass and
found that only for one concentration and one molecular weight was the system
wetting and only this case showed instability. They suggested that the nature of
disjoining pressure in the thin film ahead of the drop could cause instability. In fact
Ruckenstein & Jain (1974) have obtained theoretically a criterion for the kind of
disjoining pressure which will lead to such an instability and which is indeed satisfied
in polymer solutions (Ybarra, Neogi & MacElroy 1998). However, such thin films
cannot be seen under a microscope and it is not known if instability at this level can
propagate into the region of thick films which can be observed under a microscope
and which show the contact line instability.

(iv) Joanny & Andelman (1987) have shown theoretically that when a drop spreads
under a more viscous liquid, the contact line will become unstable. This is a form of
viscous fingering which is well known in liquid–liquid systems (Miller 1978). Lin et al.
(1998) have seen such instabilities in their experiments even when the two viscosities
were about equal. In general, contact line instability for systems with no Marangoni
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Figure 1. The shape of the drop and the region of interest are shown. The region P is where
r = r̄0. Q is an enlarged view of the precursor, not visible under the magnification in (a).

effect and spreading at low rates is observed even under air in a few experiments
(Nieh et al. 1996; Williams 1977; Léger et al. 1988).

Thus, instability is observed even when there is no mass transfer and hence no
Marangoni effect, the spreading rates are slow such that the inertial forces can be
neglected, and the ambient fluid is air such that there is no viscous fingering. The
scallops have wavelengths which are quite small, barely seen with naked eye. Only
Williams (1977) has reported quantitative values, which are 0.2 mm on a smooth
surface. It arises more readily on rough solid surfaces (such as glass slides Nieh et al.
1996) than on smooth (such as vapour deposited surfaces Léger et al. 1988; Williams
1977), and more readily in liquid–liquid systems than in liquid under air. Instability
has been observed only for wetting liquids.

The simplified model used here is that the spreading drop has a basic spherical cap
shape, moves with the rate given in (1.1) and the basal radius (r0) and the contact
angle (λa) are the apparent ones as seen under a microscope. The precursor film is
assumed to move faster than the drop (Lin, Ybarra & Neogi 1996) and is hence
ignored. The existence of the precursor makes the curvature at the apparent contact
line very large but localized, and very different from the value of the curvature of
the drop as a whole. The drop is also assumed to have spread sufficiently such that
it appears flat and the lubrication theory approximation applies. This geometry is
shown schematically in figure 1. For such a model, linear stability analysis shown
below predicts unstable contact lines with waves of small wavelengths. Two cases,
one where the ambient fluid is inviscid and one where it is infinitely viscous, are
considered. Fluids are taken to be Newtonian.

There are two features by which the present analysis is different from the existing
studies. When the local drop thickness is perturbed from its base value of h̄ to h̄+ h′,
the perturbation adds a Laplace pressure proportional to ∇2

s h
′ + (4H̄2 − 2K̄)h′. Here,

∇2
s is the Laplace–Beltrami operator and represents the term that is usually accounted

for in the stability calculations (Bertozzi & Brenner 1997). H̄ and K̄ are the mean and
Gaussian curvatures of the base profile h̄. Thus, they are zeros when the base profile
is a flat film. This term was derived by Tyupstov (1966) and Huh (1969). They, as well
as Pitts (1974), used it to study the stability of static drops and Neogi & Adib (1985)
to study the stability of rotating contact lines. It has a destabilizing effect and plays
a crucial role here. The second feature is that to analyse the stability of the contact
line region of a drop, it is necessary to allow the contact line to move. This requires
one to use a slip velocity as explained earlier. Joanny & Andelman (1984) did not
use slip and hence their results include infinite stresses at the contact line. Bertozzi &
Brenner (1997) used the Hoffman–Voinov–Tanner rule that includes a cutoff length,
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which is equivalent to a slip length, and the flow that it describes is equivalent to
that obtained on using a slip velocity. However, they ignore both the fact that the
base curvature is very large at the contact line, and the second contribution to the
Laplace pressure discussed earlier. This term (4H̄2 − 2K̄) is very significant near the
contact line but localized there, and can destabilize its movement as will be shown
subsequently.

2. A liquid drop on a horizontal solid surface and under air
The solutions to the fluid mechanics of spreading drops (Neogi & Miller 1982,

1983) assume that the drops have spread sufficiently to appear flat and thin and
the key features are given below. The equations of motion are simplified with the
quasi-static assumption and the lubrication theory assumption. Under the latter, only
the velocity in the tangential (r) direction, v̄r is important and varies mainly in the
normal (z) direction, leading to

−∂p̄
∂r

+ µ
∂2v̄r

∂z2
≈ 0, (2.1)

−∂p̄
∂z
≈ 0, (2.2)

where the overbars indicate the base quantities which are to be distinguished from the
perturbations to appear soon. The coordinates are shown in figure 1. Here, µ is the
viscosity and p̄ is the pressure. If the drop height is of the order of H and the lateral
dimension L, then under the lubrication theory approximation the slope of the drop
profile ∼ H/L, is small and can be ignored. This leads to the equations of motion
given above, and the following boundary conditions, which are similar to those that
apply to a film of constant thickness:

zero shear
∂v̄r

∂z
= 0 at z = h̄, (2.3)

slip

v̄r = − l
2

3µ

∂p̄

∂r
at z = 0, (2.4)

normal stress

p̄ = −γ
[
∂2h̄

∂r2
+

1

r

∂h̄

∂r

]
at z = h̄, (2.5)

where h̄ is the local drop thickness and l is the slip length. The pressure, as given by
the product of surface tension and the approximate form of curvature appropriate
when the drop is flat in (2.5), is the same for all values of z as seen in (2.2). The order
of the mean curvature here, ∼ H/L2, is small and the pressure gradient that it gives
rise to is ∼ H/L3, still smaller. However, if this term is ignored, only the equilibrium
situation can be described. Hence under the lubrication theory approximation, to
the leading order the dynamics problem is a small-velocities problem, as seen in the
expression for the spreading rate, (2.9) below. More details on the scaling under the
lubrication theory approximation as applicable to the wetting kinetics problem are
given by Voinov (1976).
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Equation (2.1) can be integrated to obtain the velocity, which is then averaged over
the local drop thickness to get

〈v̄r〉 = − 1

3µ

∂p̄

∂r
(h̄2 + l2). (2.6)

It can be shown that the slip velocity at the contact line is equal to the average
velocity at the contact line and the contact line velocity, i.e.

v̄r(z = 0, r = r̄0, h̄ = 0) = 〈v̄r〉(r = r̄0, h̄ = 0) =
dr̄0
dt
, (2.7)

where r̄0 is the location of the contact line. Equation (2.6) was solved with the
continuity equation to get the drop profile and the spreading rate (Neogi & Miller
1982, 1983). The latter is given in (1.1). The drop shapes were found to be spherical
caps, except in the immediate vicinity of the contact line where the profile turned
sharply to form a precursor film which retained a zero contact angle at the contact
line. That is, the theory predicts that at the location determined under microscopy to
be the contact line, the drop has a very large curvature. The solution was obtained
using the method of matched asymptotic expansions based on the fact that the slip
length l is a small quantity. The domain is split into the outer region which is the
region where the basic shape of the drop is that of a spherical cap, the inner region
of the extended thin film, and the intermediate region of very large curvature at the
base of the drop.

The gauge used for constructing these solutions is ε, equal to the dimensionless slip
length l/V 1/3, where V is the drop volume. To the leading order the dimensionless
drop thickness is O(1) in the outer and intermediate regions, and O(σ2[ln |1/ε|]−1/ε) in
the inner region, where ord (σ2) < ord (ε). The pressure gradients and the velocities are
uniformly of O([ln |1/ε|]−1), all expressed in outer variables. Since the gauge function
here is different from those used in the lubrication theory approximation, it is worth
examining the slopes in the different regions. These are O(1) in the outer, O(ε) in
the intermediate and O(σ3[ln |1/ε|]−1/ε) in the inner, all expressed in outer variables.
Since the thickness and lateral dimensions are non-dimensionalized with H and L
respectively, the above slopes have to be multiplied by H/L to obtain the slopes in
terms of the primitive variables. These are all seen to be small.

The solution from the intermediate region (Neogi & Miller 1982, 1983) can be used
to show that the curvature there is

d2h̄

dr2
=

π

2λal

3µ

γ

dr̄0
dt
, (2.8)

where

dr̄0
dt

=
γ

3µ
[ln |1/ε|]−1

[
4V

π

]3

r̄−9
0 . (2.9)

One additional result that

∂2v̄r

∂z2

∣∣∣∣
z−h̄

= − 1

l2
dr̄0
dt

(2.10)

is noted for future reference. It is large because the slip length appears in the
denominator on the right-hand side of (2.10). The first derivative of the velocity at
the air–liquid interface is zero, and the velocity itself at this interface is smaller than
the right-hand side of (2.10) by a factor of h̄2, which is small in the vicinity of the
contact line.
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Figure 2. The perturbations observed at r = r̄0, and the transformed coordinates are shown in plan
view. On the left is the bulk liquid visible under a microscope and on the right is the precursor film
not observable under the microscope. The demarcating contact line is clearly visible.

Consider now that the base case receives a small perturbation. The linearized
equations of motion and continuity become

ρ

[
∂v′

∂t
+ v̄r

∂v′

∂r
+ v′z

∂v̄r

∂z
er

]
= −∇p′ + µ∇2v′, (2.11)

∇ · v′ = 0, (2.12)

where the primes denote the small perturbation. It is assumed that the perturbations
grow faster than the rate at which the basic drop spreads, and the unsteady-state term
is thus retained. That is, there are two time scales in the problem: a small time scale
which tracks the growth of instability and a large time scale over which the basic
drop moves. The latter is approximated to be frozen under the above assumption. The
convective terms are ignored under the assumption that the velocity and the velocity
gradient from the base case are very small near the contact line, being dependent on
h̄. It can be further assumed that it is possible to confine the analysis to the contact
line region, that is to large values of r − r̄0. This amounts to a shift in coordinates as
shown in figure 2. For large r̄0, the curvature of the basic drop in the θ-direction can
be ignored. The governing equations now become in cylindrical coordinates

ρ
∂v′r
∂t

= −∂p
′

∂r
+ µ

[
∂2v′r
∂r2

+
1

r̄2
0

∂2v′r
∂θ2

+
∂2v′r
∂z2

]
, (2.13)

ρ
∂v′θ
∂t

= − 1

r̄0

∂p′

∂θ
+ µ

[
∂2v′θ
∂r2

+
1

r̄2
0

∂2v′θ
∂θ2

+
∂2v′θ
∂z2

]
, (2.14)

ρ
∂v′z
∂t

= −∂p
′

∂z
+ µ

[
∂2v′z
∂r2

+
1

r̄2
0

∂2v′z
∂θ2

+
∂2v′z
∂z2

]
, (2.15)

∂v′r
∂r

+
1

r̄0

∂v′θ
∂θ

+
∂v′z
∂z

= 0. (2.16)

The solution is sought in the form (v′r, v′θ, v′z , p′) = [u(z), v(z), w(z), Π(z)] eβt e−iω(r−r̄0)

einθ , where new coordinates of figure 2 have been used. For convenience, the equation
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∇2p′ = 0 which is valid in the present case is also used:

∂2p′

∂r2
+

1

r̄2
0

∂2p′

∂θ2
+
∂2p′

∂z2
= 0. (2.17)

Substituting this form of solution into (2.13) to (2.17) leads to

ρ β u = iωΠ + µ

[
−ω2 − n2

r̄2
0

+
d2

dz2

]
u, (2.18)

ρ β v = − in

r̄0
Π + µ

[
−ω2 − n2

r̄2
0

+
d2

dz2

]
v, (2.19)

ρ β w = −dΠ

dz
+ µ

[
−ω2 − n2

r̄2
0

+
d2

dz2

]
w, (2.20)

−iω u+
in

r̄0
v +

dw

dz
= 0, (2.21)[

−ω2 − n2

r̄2
0

+
d2

dz2

]
Π = 0. (2.22)

Equation (2.22) is solved to get

Π = A sinh (zα1) + B cosh (zα1). (2.23)

Substituting (2.23) into (2.18)–(2.20) leads to equations that can be solved for the
velocities, leading to

u = C sinh (zα2) + D cosh (zα2) +
iω

ρβ
[A sinh (zα1) + B cosh (zα1)], (2.24)

v = E sinh (zα2) + F cosh (zα2)− in

r̄0ρβ
[A sinh (zα1) + B cosh (zα1)], (2.25)

w = G sinh (zα2) +H cosh (zα2)− α1

ρβ
[A cosh (zα1) + B sinh (zα1)], (2.26)

where A,B, C, . . . , H , are constants of integration, and

α2
1 =

n2

r̄2
0

+ ω2, (2.27)

α2
2 = α2

1 +
ρβ

µ
. (2.28)

Substituting the velocities into the continuity equation (2.21), one has

−Ciω +
inE

r̄0
+Hα2 = 0, (2.29)

−Diω +
inF

r̄0
+ Gα2 = 0. (2.30)

The boundary conditions at z = 0 are those of slip

v′r = − l
2

3µ

∂p′

∂r
, (2.31)
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v′θ = − l2

3µ r̄0

∂p′

∂θ
, (2.32)

and of no penetration

v′z = 0. (2.33)

The perturbed liquid–air interface is at z = h̄ + h̄′, with h′ = Ieβt e−iω(r−r0) einθ , where
I is a constant. Such a perturbation satisfies the constant volume requirement and
forces fluctuations in the θ-direction to have only discrete wavelengths. It is not
necessary to include only real values of ω which denote wave motion; imaginary
values which denote spatial instabilities are also permissible. It is required that h′/h̄
be small everywhere, because h̄ decreases as the contact line is approached, although
it does not go to zero in the region of interest, as shown in figure 1. The boundary
conditions at that interface (Higgins et al. 1977) are simplified by using the lubrication
theory approximation under which ∂h̄/∂r is small, as are the perturbed quantities and
all the fluid mechanical quantities in the base case which appear (with the exception
of the term in (2.10)) because they are small, being dependent on h̄. In addition
the base shear stress is zero at z = h̄. The resulting boundary conditions that are
linearized about the location z = h̄ are those of zero shear

∂v′θ
∂z

+
1

r̄0

∂v′z
∂θ

= 0, (2.34)

∂v′z
∂r

+
∂v′r
∂z

+
∂2v̄r

∂z2
h′ = 0, (2.35)

kinematics
∂h′

∂t
= v′z , (2.36)

and the normal stress balance

∂p̄

∂z
h′ + p′ − 2µ

∂v′z
∂z

= −γ
[
∂2h′

∂r2
+

1

r̄0

∂h′

∂r
+

1

r̄2
0

∂2h′

∂θ2

]
+ γ

[
∂2h̄

∂r2

]2

h′. (2.37)

It is noteworthy that some base quantities become included in the boundary conditions
when the boundary is moved from h̄ + h′ to h̄. The second derivative of the base
velocity determined earlier in (2.10) appears in (2.35). It is the largest term involving
the base velocity to appear in the equations governing the perturbations, and the only
one among such terms that has been retained based on magnitudes. In (2.37) the base
pressure gradient is seen to be zero from (2.2). The last term in this equation is very
important and arises when the base profile is curved.

Substituting the solutions into the boundary conditions, together with (2.29) and
(2.30), one has a set of equations which can be expressed as a matrix equation

Qq = 0, (2.38)

where Q is a 9 × 9 matrix and q is a column vector made up of constants
A,B, C, . . . , H, I . For these constants to have a non-trivial solution, the determinant
of Q must vanish. Since the solution is confined to the region near the contact line,
one additional simplification that h̄ is very small is made, which is equivalent to the
assumptions that α1h̄� 1 and α2h̄� 1. Expansions of functions of h̄ are taken up to
terms of the order of h̄3 to obtain the results given below. This assumption becomes
invalid for disturbances of small wavelengths. However, the physical effect at small
wavelengths is known, in that such disturbances are stable because of the effect of
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surface tension which acts to reduce the very large areas that are created. When the
determinant is zero, one has

β = −iω
∂2v̄r

∂z2
h̄2 − α2

1h̄
3

3µ
γ

[
α2

1 −
(

d2h̄

dr2

)2
]
, (2.39)

where one term in the expression for curvature has been ignored under the assumption
that r̄0 is large. It is seen that the effects of slip length are negligible at this order
of approximation. In particular, (2.39) has been arrived at by assuming that l is no
larger than h̄. When the curvature is large, (2.39) becomes

β ' α2
1 h̄

3 γ

3µ

(
d2h̄

dr2

)2

, (2.40)

that is, the system can become unstable due to large curvature near the contact line.

3. A liquid drop on a horizontal solid surface under a very viscous ambient
liquid

This case is very similar to one analysed above except that the boundary condition
at the drop–ambient liquid interface changes to that of no slip, that is (2.3) changes to

v̄r = 0 at z = h̄ (no-slip). (3.1)

Equation (2.6) becomes

〈v̄r〉 = − 1

12µ

∂p̄

∂r
(h̄2 + 6l2). (3.2)

Equation (2.9) changes to

dr̄0
dt

= − l
2

2µ

∂p̄

∂r
(3.3)

and a quantity that is needed later changes from zero to

∂v̄r

∂z

∣∣∣∣
z=h̄

=
1

2µ

∂p̄

∂r

[
h̄+

2l2

3h̄

]
= − 3

2l2
dr̄0
dr

[
h̄+

2l2

3h̄

]
, (3.4)

that is, the shear stress at the contact line becomes infinite in spite of slip at the solid–
liquid interface. This is due to the fact that the no-slip condition at the liquid–liquid
interface in this case is an approximation which is not always reliable. In what follows
the contact line region will be assumed to have very small values of h̄ but still larger
than slip length l. The average velocity in (3.2) is the same as that in (2.6) except for
some constants. Both equations are solved for drop profiles using an integral form of
the continuity equation subject to initial and boundary conditions. Since these are the
same for both cases, the solutions are also same, with minor changes in the constants
as seen on comparing (2.6) and (3.2).

Among the perturbed quantities, the boundary conditions at z = h̄ become

v′θ = 0, (3.5)

v′r +
∂v̄r

∂z
h′ = 0, (3.6)

which replace (2.34) and (2.35).
The procedure now is same as before. Equations (2.23)–(2.26) are still valid solutions



180 P. Neogi

to the perturbations. One obtains a matrix equation like (2.38). The determinant of
the square matrix for small values of h̄ yields terms up to h̄3:

β = −iω
∂v̄r

∂z

h̄

2
. (3.7)

It appears therefore that the no-slip boundary condition at the liquid–liquid interface
is too strong and freezes out the important modes of instability. This case will not be
considered any further.

4. Results and discussion
Substituting into (2.39) from (2.8) and (2.10), one has

β = iω

[
h̄

l

]2
dr̄0
dt
− α4

1 h̄
3

3µ
γ +

α2
1 h̄ π

2 3µ

4 λ2
a γ

[
h̄

l

]2 [
dr̄0
dt

]2

. (4.1)

The second term on the right-hand side is not significant unless α1 is very large, in
which case it exerts a stabilizing influence. This is the usual effect of surface tension
where disturbances of small wavelengths are rendered stable. Thus, no obvious
problems due to the approximation α1h̄� 1 or α2h̄� 1 made earlier are observed
at small wavelengths. The third term on the right-hand side represents the effect
of curvature. For disturbances of intermediate wavenumbers α1 (or wavelengths) this
term will dominate and will destabilize the system. It is the first term on the right-hand
side that is difficult to interpret. For β = 0, iω is real and if the effect of curvature
dominates, then it is negative. Since disturbances grow spatially as exp [−iω(r − r̄0)],
a negative real value of iω implies that the disturbances in the vicinity of the contact
line decay as they travel to the interior. Although iω does not represent waves,
the inverse of it represents a length scale of the region near the contact line and the
disturbances near the contact line are confined to this region. However, the magnitude
of this length is not known. If the magnitudes of the first and the third terms on the
right-hand side are compared with nominal values of the variables, the first term is
seen to be large. That is, it will dominate β unless iω is very small. Since no activity in
the radial direction is seen in the experiments, iω is set to zero. Equation (4.1) becomes

β ' −n
2 h̄3

3µr̄2
0

γ

[
n2

r̄2
0

−
(
δ

l

)2(
dr̄0
dt

)2
]
, (4.2)

where δ = 3πµ/(2λaγ). The smallest allowable value of n is 1. The system is unstable
for n = 1 to n = n0 where n0 is obtained by setting β to zero, as n0 = r̄0(δ/l)(dr̄0/dt).
A schematic view is shown in figure 3. The fastest growing wavelength can be found
from the maximum in β with respect to n in (4.2). One has

βmax =
γ

12µ

(
δ

l

)2

h̄3

(
dr̄0
dt

)4

, (4.3)

which occurs at nm = (r̄0/
√

2)(δ/l)(dr̄0/dt). This is the fastest growing mode which
for reasonable values of the parameters (r̄0 = 0.2 cm, dr̄0/dt = 10−3 cm s−1 since
spontaneous spreading is generally of the order of 1 mm min−1, Bascom, Cottington
& Singleterry 1964, µ = 1p, γ = 27 dyn cm−1, λa = 0.1, l = 10−4 cm for a rough
surface and 10−7 cm for a smooth surface, based on the discussion by Neogi & Miller
1982, 1983) yields nm = 1.7 for a rough surface and 1745 for a smooth surface, and
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n

â
âmax

n = 1 n = nm

n = n0

Figure 3. The rate of growth β plotted against n, with the key values of n shown: n0, the margin-
ally stable case; nm, the fastest growing wavelength; and n = 1 the minimum allowable value.

the wavelengths in the θ-direction are 2πr̄0/nm = 0.72 mm on the rough surface and
0.00072 mm on the smooth. Both of these values appear to be reasonably within the
visible range of a microscope. Since the drop volumes are of the order of 10−3 cm3, the
dimensionless slip length ε falls in the range of 10−3 to 10−6 in these calculations. The
rate of growth appears to be sensitive to the slip length with βmax ∝ ε−2[ln |1/ε|]−4,
which is also seen in the results of Bertozzi & Brenner (1997).

Since the large curvature at the contact line is so important, it is useful to reconsider
the features behind it. The basic drop shape is a spherical cap with an apparent
dynamic contact angle of λa and the profile then changes sharply to form the very
thin precursor film with a contact angle of zero in accordance with the fact that it is a
wetting liquid. In the case of non-wetting liquids the precursor film has to make a much
less drastic turn to make a non-zero angle of λ < λa. This is much easier to achieve and
the solution for the spreading drop of a non-wetting liquid shows smaller curvatures
and no precursor films. No contact line instability should arise. Further, in the forced
spreading encountered in most coating operations λa is quite large even for wetting
liquids, suggesting that the curvatures at the apparent contact line are large and the
contact lines are unstable, although the extent of manifestation of the instability can
vary. The contact line instability is well known in forced spreading (Kistler 1993).

Although a power of 1/10 is predicted for the extent of drop spreading as a function
of time (1.1), and is often observed experimentally, a power close to 1/7 is also ob-
served for liquid drops under air (Cazabat & Cohen Stuart 1986) and under a second
liquid (Lin, Neogi & Ybarra 1998). In fact even in experiments which show power of
1/10, a few runs show power of 1/7. An analysis by de Gennes (1985) equates the rate
of viscous dissipation to the rate of surface work to obtain Hoffman–Voinov–Tanner
rule (2.9). When the system is unstable, this balance still applies but both quantities are
now different, and so the overall rate of movement is expected to be different. Thus the
fact that different rates are observed at times is not surprising. Joanny & de Gennes
(1984) have shown how these quantities could be calculated in the presence of waves.
Those methods however require that one examines the squares of perturbed quantities,
and as only linear terms have been retained here, the present results will not be useful.

To locate the contact line at r̄0 + r′0, as shown in figure 2, one has

(h̄+ h′)|r=r̄0+r′0 ≈ h̄|r=r̄0 +
∂h̄

∂r
|r=r̄0r′0 + h′|r=r̄0 = 0

where the right-hand side becomes

0 + (−λa)r′0 + I einθ eβt = 0, r′0 =
I

λa
einθ eβt. (4.4)
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Some of the terms that arise in (4.4) such as the amplitude of the waves (I/λa)
and their rate of growth β, can be measured to test these results, though as yet
have not been reported for a wetting liquid; however a very interesting experimental
work on a perturbation about equilibrium has been reported for a non-wetting
system (Ondarcuhu & Veyssie 1991). Equilibrium does not exist in a wetting system
considered here. Equation (2.9) shows that the basic spreading rate has only an inverse
logarithmic dependence on ε, a dependence that is too weak to evaluate ε from the
experimental data with precision. However, the characteristics of the instability, being
much stronger functions of ε, could provide a better way of estimating the slip length
from experiments.

Consequently, the contact line instability due to the curvature effect as predicted
here not only explains the existing experimental results, but it also paves the way for
more focused future work, both experimental and theoretical.

The author acknowledges the many insightful comments from an unknown referee
which have transformed this work much beyond its original scope.

REFERENCES

Bascom, W. D., Cottington, R. L. & Singleterry, C. R. 1964 Dynamic surface phenomena in
spontaneous spreading of oils and solids. In Contact Angle Wettability and Adhesion (ed. R. F.
Gould), p. 335. Advances in Chemistry Series, vol. 43. Am. Chem. Soc., Washington, DC.

Bertozzi, A. L. & Brenner, M. P. 1997 Linear stability and transient growth in driven contact
lines. Phys. Fluids 9, 530.

Cazabat, A. M. & Cohen Stuart, M. A. 1986 Dynamics of wetting: effects of roughness. J. Phys.
Chem. 90, 5845.

Fournier, J. B. & Cazabat, A. M. 1992 Tears of wine. Europhys. Lett. 20, 517.

Gennes, P. G. de 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827.

Higgins, B. G., Silliman, W. J., Brown, R. A. & Scriven, L. E. 1977 Theory of meniscus shape in
film flows. A synthesis. IEC Fundam. 16, 393.

Huh, C. 1969 Capillary hydrodynamics: interfacial instability and the solid/liquid/fluid contact
line. PhD thesis, Department of Chemical Engineering, University of Minnesota, Minneapolis.

Joanny, J.-F. & Andelman, D. 1987 Steady-state motion of a liquid/liquid/solid contact line. J.
Colloid Interface Sci. 119, 451.

Joanny, J.-F. & Gennes, P. G. de 1984. A model for contact line hysteresis. J. Chem. Phys. 81, 552.

Kistler, S. 1993 Hydrodynamics of wetting. In Wettability (ed. J. C. Berg), p. 311. Marcel Dekker,
Inc.
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